The International Association for the Properties of Water and Steam

Moscow, Russia

June 2014

Revised Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy $p(h, s)$ for Regions 1 and 2 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam

© 2014 International Association for the Properties of Water and Steam
Publication in whole or in part is allowed in all countries provided that attribution is given to the International Association for the Properties of Water and Steam

President:
Professor Tamara Petrova
Moscow Power Engineering Institute
Moscow, Russia
Executive Secretary:
Dr. R. B. Dooley
Structural Integrity Associates
Southport, Merseyside, UK
Email: bdooley@structint.com

This revised supplementary release replaces the corresponding supplementary release of 2001, and contains 13 pages, including this cover page.

This revised supplementary release has been authorized by the International Association for the Properties of Water and Steam (IAPWS) at its meeting in Moscow, Russia, 22-27 June, 2014, for issue by its Secretariat. The members of IAPWS are: Britain and Ireland, Canada, the Czech Republic, Germany, Japan, Russia, Scandinavia (Denmark, Finland, Norway, Sweden), and the United States, and associate members Argentina \& Brazil, Australia, France, Greece, Italy, New Zealand, and Switzerland.

The backward equations for pressure as a function of enthalpy and entropy $p(h, s)$ provided in this release are recommended to supplement the "IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" (IAPWS-IF97) [1, 2]. Further details about the equations $p(h, s)$ can be found in the corresponding article by H.-J. Kretzschmar et al. [3].

This revision consists of edits to clarify descriptions of how to determine the region or subregion; the property calculations are unchanged.

Further information concerning this supplementary release, other releases, supplementary releases, guidelines, technical guidance documents, and advisory notes issued by IAPWS can be obtained from the Executive Secretary of IAPWS or from http://www.iapws.org.

Contents

1 Nomenclature 2
2 Background 3
3 Numerical Consistency Requirements 4
4 Structure of the Equation Set 4
5 Backward Equation $p(h, s)$ for Region 1 5
5.1 The Equation 5
5.2 Numerical Consistency with the Basic Equation of IAPWS-IF97 6
6 Backward Equations $\boldsymbol{p}(h, s)$ for Region 2 6
6.1 Subregions 6
6.2 The Equations 8
6.3 Numerical Consistency with the Basic Equation of IAPWS-IF97 9
6.4 Consistency at Boundaries Between Subregions 11
7 Backward Functions $\boldsymbol{T}(h, s)$ for Regions 1 and 2 11
7.1 Calculation of the Backward Functions $T(h, s)$ 11
7.2 Numerical Consistency with the Basic Equations of IAPWS-IF97 12
7.3 Consistency at Boundaries Between Subregions 12
8 Computing Time in Relation to IAPWS-IF97 13
9 References 13

1 Nomenclature

Thermodynamic quantities:

$f \quad$ Specific Helmholtz free energy
$g \quad$ Specific Gibbs free energy
$h \quad$ Specific enthalpy
$p \quad$ Pressure
s Specific entropy
T Absolute temperature ${ }^{\text {a }}$
$\Delta \quad$ Difference in any quantity
$\eta \quad$ Reduced enthalpy, $\eta=h / h^{*}$
$\pi \quad$ Reduced pressure, $\pi=p / p^{*}$
σ Reduced entropy, $\sigma=s / s^{*}$
Root-mean-square value:

$$
\Delta x_{\mathrm{RMS}}=\sqrt{\frac{1}{N} \sum_{n=1}^{N}\left(\Delta x_{n}\right)^{2}}
$$

where Δx_{n} can be either absolute or percentage difference between the corresponding quantities $x ; N$ is the number of Δx_{n} values (100 million random points tol Tolerance of a quantity over the range of validity).
${ }^{\text {a }}$ Note: T denotes absolute temperature on the International Temperature Scale of 1990 (ITS-90).

2 Background

The Industrial Formulation IAPWS-IF97 for the thermodynamic properties of water and steam [1, 2] contains basic equations, saturation equations and equations for the most often used backward functions $T^{97}(p, h)$ and $T^{97}(p, s)$ valid in the liquid region 1 and the vapor region 2; see Figure 1.

Figure 1. Equations of the IAPWS-IF97 and backward equations $p(h, s)$
In thermodynamic process modeling, the backward functions $p(h, s)$ and $T(h, s)$ for water and steam are also used. The calculations of these functions from the IAPWS-IF97 Formulation are time-consuming, because they require two-dimensional iterations from $h^{97}(p, T)$ and $s^{97}(p, T)$, where $h^{97}(p, T)$ and $s^{97}(p, T)$ are derivatives of the IAPWS-IF97 basic equations $g^{97}(p, T)$ of regions 1 and 2 . Although the functions $p(h, s)$ and $T(h, s)$ may not often be used in process modeling, the computing time to calculate them is very high in comparison with the times for other property functions.

In order to avoid such iterations, this release provides equations for the backward function $p(h, s)$ valid in regions 1 and 2; see Figure 1. With the pressure $p(h, s)$, the temperature $T(h, s)$ can be calculated by using the IAPWS-IF97 backward equations $T^{97}(p, h)^{1)}$. The numerical consistencies of calculated p and T to the IAPWS-IF97 equations $g^{97}(p, T)$ are sufficient for most applications in heat cycle and steam turbine calculations. For applications where the demands on numerical consistency are extremely high, iterations using the IAPWS-IF97 equations may be necessary. In these cases, the equations $p(h, s)$ can be used for

[^0]calculating very accurate starting values.
The backward equations $p(h, s)$ can only be used in their ranges of validity described in Sections 5 and 6 . They should not be used for determining any thermodynamic derivatives.

In any case, depending on the application, a conscious decision is required whether to use the backward equations $p(h, s)$ or to calculate the corresponding values $p(h, s)$ by iterations from the basic equations of IAPWS-IF97.

3 Numerical Consistency Requirements

The permissible values $\Delta p_{\text {tol }}$ for the numerical consistency for the equations $p(h, s)$ can be estimated from the total differential

$$
\Delta p_{\mathrm{tol}}=\left(\frac{\partial p}{\partial h}\right)_{s} \Delta h_{\mathrm{tol}}+\left(\frac{\partial p}{\partial s}\right)_{h} \Delta s_{\mathrm{tol}}
$$

where $\Delta h_{\text {tol }}$ and $\Delta s_{\text {tol }}$ are values determined by IAPWS [4] as a result of an international survey. Table 1 shows these values and the resulting numerical consistencies $\Delta p_{\text {tol }}$ for regions 1 and 2 . Because of the weak dependence on pressure, it is suitable to divide the liquid region 1 into two ranges by using the pressure line $p=2.5 \mathrm{MPa}$. In the vapor region 2 , the numerical consistency requirement is higher for entropies greater than or equal to $5.85 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

For the numerical consistency $\Delta T_{\text {tol }}$ of the backward function $T(h, s)$, the values that IAPWS had determined for the backward equations $T^{97}(p, h)$ and $T^{97}(p, s)$ [5] have been taken.

Table 1. Numerical consistency values $|\Delta h|_{\text {tol }}$ and $|\Delta s|_{\text {tol }}$ of [4], resulting values $|\Delta p|_{\text {tol }}$ required for $p(h, s)$, and values $|\Delta T|_{\text {tol }}$ of [5] required for $T(h, s)$

| Region | | $\|\Delta h\|_{\text {tol }}$ | $\|\Delta s\|_{\text {tol }}$ | $\|\Delta p\|_{\text {tol }}$ | $\|\Delta T\|_{\text {tol }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $80 \mathrm{~J} \mathrm{~kg}^{-1}$ | $0.10 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ | $p \leq 2.5 \mathrm{MPa}$
 $p>2.5 \mathrm{MPa}$ | 0.6%
 15 kPa | 25 mK |
| $\mathbf{2}$ | $s<5.85 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
 $s \geq 5.85 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ | $32 \mathrm{~J} \mathrm{~kg}^{-1}$ | $0.10 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ | 0.0088% | |
| $0.04 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ | 0.0035% | | | | |

4 Structure of the Equation Set

The equation set consists of backward equations $p(h, s)$ for the IAPWS-IF97 regions 1 and 2 , see Figure 1.

Region 1 is defined by:

$$
p_{\mathrm{sat}}^{97}(T) \leq p \leq 100 \mathrm{MPa} \text { and } 273.15 \mathrm{~K} \leq T \leq 623.15 \mathrm{~K}
$$

where $p_{\text {sat }}^{97}(T)$ is the saturation pressure equation of IAPWS-IF97.
Region 2 is defined by:

$$
\begin{aligned}
& 611.213 \mathrm{~Pa} \leq p<p_{\mathrm{sat}}^{97}(T) \text { for } 273.15 \mathrm{~K} \leq T \leq 623.15 \mathrm{~K} \\
& 611.213 \mathrm{~Pa} \leq p \leq p_{\mathrm{B} 23}^{97}(T) \text { for } 623.15 \mathrm{~K}<T \leq 863.15 \mathrm{~K} \\
& 611.213 \mathrm{~Pa} \leq p \leq 100 \mathrm{MPa} \text { for } 863.15 \mathrm{~K}<T \leq 1073.15 \mathrm{~K}
\end{aligned}
$$

where $p_{\mathrm{B} 23}^{97}(T)$ represents the B23-equation of IAPWS-IF97. This equation roughly describes an isentropic line; the entropy values along this line are between $s=5.047 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ and $s=5.261 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

5 Backward Equation $p(h, s)$ for Region 1

5.1 The Equation

The backward equation $p(h, s)$ for region 1 has the following dimensionless form

$$
\begin{equation*}
\frac{p_{1}(h, s)}{p^{*}}=\pi(\eta, \sigma)=\sum_{i=1}^{19} n_{i}(\eta+0.05)^{I_{i}}(\sigma+0.05)^{J_{i}} \tag{1}
\end{equation*}
$$

where $\pi=p / p^{*}, \quad \eta=h / h^{*}$, and $\sigma=s / s^{*}$ with $p^{*}=100 \mathrm{MPa}, h^{*}=3400 \mathrm{~kJ} \mathrm{~kg}^{-1}$, and $s^{*}=7.6 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. The coefficients n_{i} and exponents I_{i} and J_{i} of Eq. (1) are listed in Table 2.

Table 2. Coefficients and exponents of the backward equation $p_{1}(h, s)$ for region 1 in its dimensionless form, Eq. (1)

i	I_{i}	J_{i}	n_{i}	i	I_{i}	J_{i}	n_{i}
1	0	0	-0.691997 014660582	11	1	4	$-0.319947848334300 \times 10^{3}$
2	0	1	-0.183 $612548787560 \times 10^{2}$	12	1	6	$-0.928354307043320 \times 10^{3}$
3	0	2	-0.928 $332409297335 \times 10^{1}$	13	2	0	$0.303634537455249 \times 10^{2}$
4	0	4	$0.659639569909906 \times 10^{2}$	14	2	1	$-0.650540422444146 \times 10^{2}$
5	0	5	$-0.162060388912024 \times 10^{2}$	15	2	10	$-0.430991316516130 \times 10^{4}$
6	0	6	$0.450620017338667 \times 10^{3}$	16	3	4	$-0.747512324096068 \times 10^{3}$
7	0	8	$0.854680678224170 \times 10^{3}$	17	4	1	$0.730000345529245 \times 10^{3}$
8	0	14	$0.607523214001162 \times 10^{4}$	18	4	4	$0.114284032569021 \times 10^{4}$
9	1	0	$0.326487682621856 \times 10^{2}$	19	5	0	$-0.436407041874559 \times 10^{3}$
10	1	1	$-0.269408844582931 \times 10^{2}$				

Computer-program verification

To assist the user in computer-program verification of Eq. (1), Table 3 contains test values for the calculated pressure.

Table 3. Selected pressure values calculated from the backward equation $p_{1}(h, s)$, Eq. (1) ${ }^{\text {a }}$

$h /\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$	$s /\left(\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\right)$	$p_{1}(h, s) / \mathrm{MPa}$
0.001	0	$9.800980612 \times 10^{-4}$
90	0	$9.192954727 \times 10^{1}$
1500	3.4	$5.868294423 \times 10^{1}$

${ }^{\mathrm{a}}$ It is recommended to verify programmed functions using 8 byte real values for all variables.

5.2 Numerical Consistency with the Basic Equation of IAPWS-IF97

The maximum pressure differences and related root-mean-square differences between $p_{1}(h, s)$, Eq. (1), and the IAPWS-IF97 basic equation $g_{1}^{97}(p, T)$ for pressures less than or equal to 2.5 MPa or greater than this value are listed in Table 4.

Table 4. Maximum differences and root-mean-square differences between pressures calculated from Eq. (1) and from the IAPWS-IF97 basic equation $g_{1}^{97}(p, T)$ in comparison with the permissible differences

	$\|\Delta p\|_{\text {tol }}$	$\|\Delta p\|_{\text {max }}$	$(\Delta p)_{\mathrm{RMS}}$
$p \leq 2.5 \mathrm{MPa}$	0.60%	0.55%	0.11%
$p>2.5 \mathrm{MPa}$	15 kPa	14 kPa	6 kPa

6 Backward Equations $p(h, s)$ for Region 2

6.1 Subregions

Region 2 is covered by three $p(h, s)$ equations, corresponding to the three $T_{2}^{97}(p, h)$ backward equations or to the three $T_{2}^{97}(p, s)$ backward equations for the IAPWS-IF97. Figure 2 shows the way in which region 2 is divided into the three subregions $2 \mathrm{a}, 2 \mathrm{~b}$ and 2 c for the backward equations.

The boundary between subregions 2 a and 2 b corresponds to the isobar $p=4 \mathrm{MPa}$. In order to decide which $p(h, s)$ equation, 2 a or 2 b , must be used for given values of h and s, the boundary equation $h_{2 a b}(s)$, Eq. (2), has to be used. This equation is a polynomial of the third degree and reads

$$
\begin{equation*}
\frac{h_{2 \mathrm{ab}}(s)}{h^{*}}=\eta(\sigma)=n_{1}+n_{2} \sigma+n_{3} \sigma^{2}+n_{4} \sigma^{3}, \tag{2}
\end{equation*}
$$

where $\eta=h / h^{*}$ and $\sigma=s / s^{*}$ with $h^{*}=1 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and $s^{*}=1 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. The coefficients n_{1} to n_{4} of Eq. (2) are listed in Table 5.

Figure 2. Division of region 2 into three subregions 2a, 2b, 2c for the backward equations $p(h, s)$

The range of equation $h_{2 \mathrm{ab}}(s)$ is from $s^{\prime \prime}(p=4 \mathrm{MPa})$ on the saturated vapor line to $s_{2}^{97}(p=4 \mathrm{MPa}, T=1073.15 \mathrm{~K})$; see Figure 2. Based on its simple form, Eq. (2) does not exactly describe the isobaric line $p=4 \mathrm{MPa}$. The maximum pressure deviation was determined as

$$
\left|\Delta p_{2 \mathrm{ab}}\right|_{\max }=\left|p_{2}^{97}\left(h_{2 \mathrm{ab}}\left(s_{2}^{97}\right), s_{2}^{97}\right)-4 \mathrm{MPa}\right|=22 \mathrm{kPa}
$$

where p_{2}^{97} was obtained by iteration and $s_{2}^{97}(p=4 \mathrm{MPa}, T)$.
Table 5. Numerical values of the coefficients of the equation $h_{2 \mathrm{ab}}(s)$ in its dimensionless form, Eq. (2), for defining the boundary between subregions 2a and 2b

i	n_{i}	i	n_{i}
1	$-0.349898083432139 \times 10^{4}$	3	$-0.421073558227969 \times 10^{3}$
2	$0.257560716905876 \times 10^{4}$	4	$0.276349063799944 \times 10^{2}$

The boundary between the subregions 2 b and 2 c is the entropy line $s=5.85 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. Input points can be tested directly to identify the subregion since the specific entropy is an independent variable.

For computer-program verification, Eq. (2) gives the following s-h point: $s=7 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, h_{2 \mathrm{ab}}=3376.437884 \mathrm{~kJ} \mathrm{~kg}^{-1}$.

6.2 The Equations

Subregion 2a

The backward equation $p_{2 a}(h, s)$ for subregion 2 a in its dimensionless form reads as follows:

$$
\begin{equation*}
\frac{p_{2 a}(h, s)}{p^{*}}=\pi(\eta, \sigma)=\left[\sum_{i=1}^{29} n_{i}(\eta-0.5)^{I_{i}}(\sigma-1.2)^{J_{i}}\right]^{4} \tag{3}
\end{equation*}
$$

where $\pi=p / p^{*}, \quad \eta=h / h^{*}$, and $\sigma=s / s^{*}$, with $p^{*}=4 \mathrm{MPa}, \quad h^{*}=4200 \mathrm{~kJ} \mathrm{~kg}^{-1}$, and $s^{*}=12 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. The coefficients n_{i} and exponents I_{i} and J_{i} of Eq. (3) are listed in Table 6.

Table 6. Coefficients and exponents of the backward equation $p_{2 \mathrm{a}}(h, s)$ for subregion 2 a in its dimensionless form, Eq. (3)

i	I_{i}	J_{i}	n_{i}	i	I_{i}	J_{i}	n_{i}
1	0	1	$-0.182575361923032 \times 10^{-1}$	16	1	22	$0.431757846408006 \times 10^{4}$
2	0	3	-0.125229548799536	17	2	3	$0.112894040802650 \times 10^{1}$
3	0	6	0.592290437320145	18	2	16	$0.197409186206319 \times 10^{4}$
4	0	16	$0.604769706185122 \times 10^{1}$	19	2	20	$0.151612444706087 \times 10^{4}$
5	0	20	$0.238624965444474 \times 10^{3}$	20	3	0	$0.141324451421235 \times 10^{-1}$
6	0	22	$-0.298639090222922 \times 10^{3}$	21	3	2	0.585501282219601
7	1	0	$0.512250813040750 \times 10^{-1}$	22	3	3	$-0.297258075863012 \times 10^{1}$
8	1	1	-0.437266515606486	23	3	6	$0.594567314847319 \times 10^{1}$
9	1	2	0.413336902999504	24	3	16	$-0.623656565798905 \times 10^{4}$
10	1	3	$-0.516468254574773 \times 10^{1}$	25	4	16	$0.965986235133332 \times 10^{4}$
11	1	5	$-0.557014838445711 \times 10^{1}$	26	5	3	$0.681500934948134 \times 10^{1}$
12	1	6	$0.128555037824478 \times 10^{2}$	27	5	16	$-0.633207286824489 \times 10^{4}$
13	1	10	$0.114144108953290 \times 10^{2}$	28	6	3	$-0.558919224465760 \times 10^{1}$
14	1	16	$-0.119504225652714 \times 10^{3}$	29	7	1	$0.400645798472063 \times 10^{-1}$
15	1	20	$-0.284777985961560 \times 10^{4}$				

Subregion 2b

The backward equation $p_{2 b}(h, s)$ for subregion $2 b$ in its dimensionless form reads as follows:

$$
\begin{equation*}
\frac{p_{2 b}(h, s)}{p^{*}}=\pi(\eta, \sigma)=\left[\sum_{i=1}^{33} n_{i}(\eta-0.6)^{I_{i}}(\sigma-1.01)^{J_{i}}\right]^{4} \tag{4}
\end{equation*}
$$

where $\pi=p / p^{*}, \quad \eta=h / h^{*}$, and $\sigma=s / s^{*}$, with $p^{*}=100 \mathrm{MPa}, h^{*}=4100 \mathrm{~kJ} \mathrm{~kg}^{-1}$, and $s^{*}=7.9 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. The coefficients n_{i} and exponents I_{i} and J_{i} of Eq. (4) are listed in Table 7.

Table 7. Coefficients and exponents of the backward equation $p_{2 b}(h, s)$ for subregion $2 b$ in its dimensionless form, Eq. (4)

i	I_{i}	J_{i}	n_{i}	i	I_{i}	J_{i}	n_{i}
1	0	0	$0.801496989929495 \times 10^{-1}$	18	3	12	$0.336972380095287 \times 10^{8}$
2	0	1	-0.543862807146111	19	4	1	$-0.586634196762720 \times 10^{3}$
3	0	2	0.337455597421283	20	4	16	$-0.221403224769889 \times 10^{11}$
4	0	4	$0.890555451157450 \times 10^{1}$	21	5	1	$0.171606668708389 \times 10^{4}$
5	0	8	$0.313840736431485 \times 10^{3}$	22	5	12	$-0.570817595806302 \times 10^{9}$
6	1	0	0.797367065977789	23	6	1	$-0.312109693178482 \times 10^{4}$
7	1	1	$-0.121616973556240 \times 10^{1}$	24	6	8	$-0.207841384633010 \times 10^{7}$
8	1	2	$0.872803386937477 \times 10^{1}$	25	6	18	$0.305605946157786 \times 10^{13}$
9	1	3	$-0.169769781757602 \times 10^{2}$	26	7	1	$0.322157004314333 \times 10^{4}$
10	1	5	$-0.186552827328416 \times 10^{3}$	27	7	16	$0.326810259797295 \times 10^{12}$
11	1	12	$0.951159274344237 \times 10^{5}$	28	8	1	$-0.144104158934487 \times 10^{4}$
12	2	1	$-0.189168510120494 \times 10^{2}$	29	8	3	$0.410694867802691 \times 10^{3}$
13	2	6	$-0.433407037194840 \times 10^{4}$	30	8	14	$0.109077066873024 \times 10^{12}$
14	2	18	$0.543212633012715 \times 10^{9}$	31	8	18	$-0.247964654258893 \times 10^{14}$
15	3	0	0.144793408386013	32	12	10	$0.188801906865134 \times 10^{10}$
16	3	1	$0.128024559637516 \times 10^{3}$	33	14	16	$-0.123651009018773 \times 10^{15}$
17	3	7	$-0.672309534071268 \times 10^{5}$				

Subregion 2c

The backward equation $p_{2 c}(h, s)$ for subregion 2 c in its dimensionless form reads as follows:

$$
\begin{equation*}
\frac{p_{2 c}(h, s)}{p^{*}}=\pi(\eta, \sigma)=\left[\sum_{i=1}^{31} n_{i}(\eta-0.7)^{I_{i}}(\sigma-1.1)^{J_{i}}\right]^{4} \tag{5}
\end{equation*}
$$

where $\pi=p / p^{*}, \quad \eta=h / h^{*}$, and $\sigma=s / s^{*}$, with $p^{*}=100 \mathrm{MPa}, h^{*}=3500 \mathrm{~kJ} \mathrm{~kg}^{-1}$, and $s^{*}=5.9 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. The coefficients n_{i} and exponents I_{i} and J_{i} of Eq. (5) are listed in Table 8.

Computer-program verification

To assist the user in computer-program verification of Eqs. (3), (4) and (5), Table 9 contains test values for the calculated pressure.

6.3 Numerical Consistency with the Basic Equation of IAPWS-IF97

The maximum percentage deviations for pressure and related root-mean-square values of the Eqs. (3), (4) and (5) from the IAPWS-IF97 basic equation $g_{2}^{97}(p, T)$ in comparison with the permissible differences are listed in Table 10.

Table 8. Coefficients and exponents of the backward equation $p_{2 c}(h, s)$ for subregion 2 c in its dimensionless form, Eq. (5)

i	I_{i}	J_{i}	n_{i}	I_{i}	J_{i}	n_{i}	
1	0	0	0.112225607199012	17	3	0	0.772465073604171
2	0	1	$-0.339005953606712 \times 10^{1}$	18	3	5	$0.463929973837746 \times 10^{5}$
3	0	2	$-0.320503911730094 \times 10^{2}$	19	3	8	$-0.137317885134128 \times 10^{8}$
4	0	3	$-0.197597305104900 \times 10^{3}$	20	3	16	$0.170470392630512 \times 10^{13}$
5	0	4	$-0.407693861553446 \times 10^{3}$	21	3	18	$-0.251104628187308 \times 10^{14}$
6	0	8	$0.132943775222331 \times 10^{5}$	22	4	18	$0.317748830835520 \times 10^{14}$
7	1	0	$0.170846839774007 \times 10^{1}$	23	5	1	$0.538685623675312 \times 10^{2}$
8	1	2	$0.373694198142245 \times 10^{2}$	24	5	4	$-0.553089094625169 \times 10^{5}$
9	1	5	$0.358144365815434 \times 10^{4}$	25	5	6	$-0.102861522421405 \times 10^{7}$
10	1	8	$0.423014446424664 \times 10^{6}$	26	5	14	$0.204249418756234 \times 10^{13}$
11	1	14	$-0.751071025760063 \times 10^{9}$	27	6	8	$0.273918446626977 \times 10^{9}$
12	2	2	$0.523446127607898 \times 10^{2}$	28	6	18	$-0.263963146312685 \times 10^{16}$
13	2	3	$-0.228351290812417 \times 10^{3}$	29	10	7	$-0.107890854108088 \times 10^{10}$
14	2	7	$-0.960652417056937 \times 10^{6}$	30	12	7	$-0.296492620980124 \times 10^{11}$
15	2	10	$-0.807059292526074 \times 10^{8}$	31	16	10	$-0.111754907323424 \times 10^{16}$
16	2	18	$0.162698017225669 \times 10^{13}$				

Table 9. Selected pressure values calculated from Eqs. (3), (4), and (5) ${ }^{\text {a }}$

Equation	$h /\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$	$s /\left(\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\right)$	$p(h, s) / \mathrm{MPa}$
$p_{2 \mathrm{a}}(h, s)$, Eq. (3)	2800	6.5	1.371012767
	2800	9.5	$1.879743844 \times 10^{-3}$
	4100	9.5	$1.024788997 \times 10^{-1}$
(h, s), Eq. (4)	2800	6	4.793911442
	3600	6	$8.395519209 \times 10^{1}$
	3600	7	7.527161441
$p_{2 \mathrm{c}}(h, s)$, Eq. (5)	2800	5.1	$9.439202060 \times 10^{1}$
	2800	5.8	8.414574124
	3400	5.8	$8.376903879 \times 10^{1}$

${ }^{\mathrm{a}}$ It is recommended to verify programmed functions using 8 byte real values for all variables.

Table 10. Maximum differences and root-mean-square differences between pressures calculated from Eqs. (3), (4) and (5) and from the IAPWS-IF97 basic equation $g_{2}^{97}(p, T)$ in comparison with the permissible differences

Subregion	Equation	$\|\Delta p / p\|_{\text {tol }}$	$\|\Delta p / p\|_{\max }$	$(\Delta p / p)_{\mathrm{RMS}}$
2a	(3)	0.0035%	0.0029%	0.0013%
2b	(4)	0.0035%	0.0034%	0.0005%
2c	(5)	0.0088%	0.0063%	0.0010%

6.4 Consistency at Boundaries between Subregions

The relative pressure differences between the two backward equations $p(h, s)$ of the adjacent subregions are smaller than the numerical consistencies of these equations with the IAPWSIF97 basic equations.
At the boundary equation $h_{2 a b}(s)$, Eq. (2), between subregions 2a and 2 b (see Fig. 2), the maximum difference between the corresponding equations was determined as:

$$
|\Delta p / p|_{\max }=\left|p_{2 \mathrm{a}}\left(h_{2 \mathrm{ab}}, s\right)-p_{2 \mathrm{~b}}\left(h_{2 \mathrm{ab}}, s\right)\right| / p_{2 \mathrm{~b}}\left(h_{2 \mathrm{ab}}, s\right)=0.0022 \% .
$$

At the boundary line $s=5.85 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ between subregions 2 c and 2 b , the maximum difference is :

$$
|\Delta p / p|_{\max }=\left|p_{2 \mathrm{c}}(h, s)-p_{2 \mathrm{~b}}(h, s)\right| / p_{2 \mathrm{~b}}(h, s)=0.0033 \% .
$$

7 Backward Functions $T(h, s)$ for Regions 1 and 2

7.1 Calculation of the Backward Functions $T(h, s)$

The $p(h, s)$ equations described in Sections 5 and 6 together with the backward equations $T^{97}(p, h)$ of IAPWS-IF97 make it possible to determine T from h and s without iteration.

Liquid Region 1

For calculating the temperature T from given specific enthalpy h and entropy s for region 1, the following steps should be made:

First, the pressure p is calculated using the equation $p_{1}(h, s)$, Eq. (1).
Second, the temperature T can be calculated using the IAPWS-IF97 equation $T_{1}^{97}(p, h)$ (see Fig. 1), where p is the pressure previously calculated.

Vapor Region 2

The calculations of the backward function $T_{2}(h, s)$ for the entire vapor region 2 should be made as follows:

First, using the equation $h_{\text {2ab }}(s)$, Eq. (2), and the entropy line $s=5.85 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ (see Fig. 2), search to identify the subregion (2a, 2b or 2c) for the given values of h and s. Then, the pressure p for the subregion can be calculated using the equations $p_{2 \mathrm{a}}(h, s)$, Eq. (3) or $p_{2 \mathrm{~b}}(h, s)$, Eq. (4) or $p_{2 \mathrm{c}}(h, s)$, Eq. (5).
Second, using the IAPWS-IF97 equation $h_{2 \mathrm{bc}}^{97}(p)$ and pressure line $p=4 \mathrm{MPa}$, search to identify the IAPWS-IF97 subregion (2a, 2b or 2c) for the given value of h and the calculated value of p. Then, the temperature T can be calculated for the subregion using the IAPWS-IF97 backward equations $T_{2 \mathrm{a}}^{97}(p, h), T_{2 \mathrm{~b}}^{97}(p, h)$ or $T_{2 \mathrm{c}}^{97}(p, h)$.

7.2 Numerical Consistency with the Basic Equations of IAPWS-IF97

The maximum temperature differences and related root-mean-square values between the calculated temperature and the IAPWS-IF97 basic equations $g_{1}^{97}(p, T)$ and $g_{2}^{97}(p, T)$ of regions 1 and 2 in comparison with the permissible differences are listed in Table 11. The temperature differences were calculated using the equation $\Delta T_{1}=\left(T_{1}^{97}\left(p_{1}\left(h_{1}^{97}, s_{1}^{97}\right), h_{1}^{97}\right)-T\right)$ for region 1 and $\Delta T_{2 \mathrm{a}}=\left(T_{2}^{97}\left(p_{2 \mathrm{a}}\left(h_{2}^{97}, s_{2}^{97}\right), h_{2}^{97}\right)-T\right)$ for subregion 2a and analogous relations for subregions 2 b and 2c. The function T_{2}^{97} represents the calculation of $T(p, h)$ using the IAPWS-IF97 backward equations of region 2 including the determination in which subregion (2a, 2 b , or 2 c) the point is located.

Table 11. Maximum differences and root-mean-square differences between calculated temperatures and IAPWS-IF97 basic equations $g_{1}^{97}(p, T)$ and $g_{2}^{97}(p, T)$ in comparison to the permissible differences

Region/Subregion	$\|\Delta T\|_{\text {tol }}$	$\|\Delta T\|_{\text {max }}$	$(\Delta T)_{\text {RMS }}$
1	25 mK	24.0 mK	13.4 mK
2a	10 mK	9.7 mK	3.0 mK
2b	10 mK	9.8 mK	4.0 mK
2c	25 mK	24.9 mK	10.3 mK

7.3 Consistency at Boundaries Between Subregions

The temperature differences between the two backward equations of the adjacent subregions have the following values.

Between subregions 2 a and 2 b , the following maximum differences were determined.
Along the boundary equation $h_{2 \mathrm{ab}}(s)$, Eq. (2):
$|\Delta T|_{\max }=\left|T_{2}^{97}\left(p_{2 \mathrm{a}}\left(h_{2 \mathrm{ab}}, s\right), h_{2 \mathrm{ab}}\right)-T_{2}^{97}\left(p_{2 \mathrm{~b}}\left(h_{2 \mathrm{ab}}, s\right), h_{2 \mathrm{ab}}\right)\right|=6.7 \mathrm{mK}$,
where the function T_{2}^{97} represents the calculation of $T(p, h)$ using the IAPWS-IF97
backward equations of region 2 including the determination of the subregion (2a, 2b, or 2c).

Along the boundary line $p=4 \mathrm{MPa}$:

$$
|\Delta T|_{\max }=\left|T_{2 \mathrm{a}}^{97}\left(p_{2}\left(h_{2}^{97}, s_{2}^{97}\right), h_{2}^{97}\right)-T_{2 \mathrm{~b}}^{97}\left(p_{2}\left(h_{2}^{97}, s_{2}^{97}\right), h_{2}^{97}\right)\right|=8.7 \mathrm{mK},
$$ where $h_{2}^{97}(p=4 \mathrm{MPa}, T)$ and $s_{2}^{97}(p=4 \mathrm{MPa}, T)$. The function p_{2} represents the calculation of $p(h, s)$ using the backward equations of region 2 and includes the determination of the subregion (2a, 2 b , or 2 c).

Between subregions 2 b and 2 c , the following maximum differences were determined.
Along the boundary line $s=5.85 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$:

$$
|\Delta T|_{\max }=\left|T_{2}^{97}\left(p_{2 \mathrm{c}}(h, s), h\right)-T_{2}^{97}\left(p_{2 \mathrm{~b}}(h, s), h\right)\right|=2.7 \mathrm{mK} .
$$

Along the IAPWS-IF97 boundary equation $h_{2 \mathrm{bc}}^{97}(p)$:

$$
|\Delta T|_{\max }=\left|T_{2 \mathrm{c}}^{97}\left(p_{2}\left(h_{2 \mathrm{bc}}^{97}, s_{2}^{97}\right), h_{2 \mathrm{bc}}^{97}\right)-T_{2 \mathrm{~b}}^{97}\left(p_{2}\left(h_{2 \mathrm{bc}}^{97}, s_{2}^{97}\right), h_{2 \mathrm{bc}}^{97}\right)\right|=21.8 \mathrm{mK},
$$

where s_{2}^{97} was iteratively calculated from p and $h_{2 \mathrm{bc}}^{97}$. Thus, the temperature differences between the two backward functions $T(h, s)$ of the adjacent subregions calculated as shown above are smaller than the numerical consistencies with the IAPWS-IF97 equations.

8 Computing Time in Relation to IAPWS-IF97

A very important motivation for the development of the backward equations $p(h, s)$ was reducing the computing time to obtain the values of p and T from given values of h and s. In IAPWS-IF97, time-consuming iterative processes, e. g., the 2-dimensional Newton method, are required. Using the $p(h, s)$ equations combined with IAPWS-IF97 backward equations $T^{97}(p, h)$, the calculation speed is between 20 and 30 times faster than that of the 2-dimensional Newton method. The numerical consistency of p and T obtained in this way is sufficient for most heat cycle calculations.
For users not satisfied with the numerical consistency of the backward equations, the equations are still recommended to give good starting points for the iterative process. It will significantly reduce the time to reach the convergence criteria of the iteration.

9 References

[1] IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2007), available from: http://www.iapws.org.
[2] Wagner, W., Cooper, J. R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Mareš, R., Oguchi, K., Sato, H., Stöcker, I., Šifner, O., Tanishita, I., Trübenbach, J., and Willkommen, Th., The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, ASME J. Eng. Gas Turbines Power 122, 150-182 (2000).
[3] Kretzschmar, H.-J., Cooper, J. R., Dittmann, A., Friend, D. G., Gallagher, J. S., Knobloch, K., Mareš, R., Miyagawa, K., Stöcker, I., Trübenbach, J., Wagner, W., and Willkommen, Th., Supplementary Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the Industrial Formulation IAPWS-IF97 for Water and Steam, ASME J. Eng. Gas Turbines Power 128, 702-713 (2006).
[4] Rukes, B., and Wagner, W., Final Set of Specifications for the New Industrial Formulation, in: Proceedings of the IAPWS Meeting in Tokyo 1991, ed. by B. Dooley, IAPWS Secretariat (1991), pp. 78-82.
[5] Rukes, B., Specifications for Numerical Consistency, in: Proceedings of the IAPWS Meeting in Orlando 1994, ed. by B. Dooley, IAPWS Secretariat (1994), pp. 31-33.

[^0]: 1) The alternative use of the IAPWS-IF97 backward equations $T^{97}(p, s)$ leads to lower numerical consistency.
